Acquired resistance of leukemic cells to AraC is associated with the upregulation of aldehyde dehydrogenase 1 family member A2.

نویسندگان

  • Misaki Kawasoe
  • Yasuko Yamamoto
  • Katsuya Okawa
  • Tadao Funato
  • Mayu Takeda
  • Takeshi Hara
  • Hisashi Tsurumi
  • Hisataka Moriwaki
  • Yuko Arioka
  • Masao Takemura
  • Hidetoshi Matsunami
  • Sanford P Markey
  • Kuniaki Saito
چکیده

The elucidation of drug resistance mechanisms is important in the development of clinical therapies for the treatment of leukemia. To study the drug resistance mechanisms, protein expression profiles of 1-β-D-arabinofuranosylcytosine (AraC)-sensitive K562 (K562S) cells and AraC-resistant K562 (K562AC) cells were compared using two-dimensional fluorescence difference gel electrophoresis. In a comparison of protein expression profiles, 2073 protein spots were found to be altered, and 15 proteins of them were remarkably altered. These proteins were identified by mass spectrometry. The most differently expressed proteins were aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and vimentin. Both proteins were verified using reverse transcriptase polymerase chain reaction and Western blot analysis. ALDH1A2 protein was found to be effective in AraC resistance. ALDH1A2 knock-down induced sensitivity to AraC treatment in K562AC cells, and ALDH1A2 overexpressed K562S cells acquired the AraC resistance. Furthermore, the findings also suggest that ALDH1A2 expression is increased after the appearance of AraC resistance in clinical cases. These results will be helpful in understanding the mechanism of AraC resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered multidrug resistance phenotype caused by anthracycline analogues and cytosine arabinoside in myeloid leukemia.

The expression of P-glycoprotein (Pgp) is often increased in acute myeloid leukemia (AML). However, little is known of the regulation of Pgp expression by cytotoxics in AML. We examined whether Pgp expression and function in leukemic blasts was altered after a short exposure to cytotoxics. Blasts were isolated from 19 patients with AML (15 patients) or chronic myeloid leukemia in blastic transf...

متن کامل

Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells.

Development of resistance to cytarabine (AraC) is a major problem in the treatment of patients with acute myeloid leukemia (AML). Inactivation of deoxycytidine kinase (dCK) plays an important role in AraC resistance in vitro. We have identified inactive, alternatively spliced dCK forms in leukemic blasts from patients with resistant AML. Because these dCK-spliced variants were only detectable i...

متن کامل

Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.

Few epitopes are available for vaccination therapy of patients with squamous cell carcinoma of the head and neck (SCCHN). Using a tumor-specific CTL, aldehyde dehydrogenase 1 family member A1 (ALDH1A1) was identified as a novel tumor antigen in SCCHN. Mass spectral analysis of peptides in tumor-derived lysates was used to determine that the CTL line recognized the HLA-A*0201 (HLA-A2) binding AL...

متن کامل

Transfection of wild-type deoxycytidine kinase (dck) cDNA into an AraC- and DAC-resistant rat leukemic cell line of clonal origin fully restores drug sensitivity.

The AraC-resistant rat leukemic cell line RO/1-A has been shown to have a typical deoxycytidine kinase (DCK)-deficient phenotype and cannot metabolize the antileukemic drugs cytarabine (AraC) and decitabine (DAC). To investigate the relative contribution of mutations in the dck gene to the development of in vitro-induced AraC-resistance, a neomycin selectable plasmid construct harboring the wil...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental hematology

دوره 41 7  شماره 

صفحات  -

تاریخ انتشار 2013